
Applications and in-depth cases

Up until now, Malliavin calculus has been mostly a game or procedure we apply to stochastic
processes. We will dive deeper and reach some interesting results.

Malliavin derivative of the Ornstein-Uhlenbeck process

Let’s consider a random process 𝑁𝑡 that fluctuates around a value 𝜇 and corrects itself more
strongly the farther it is to 𝜇, plus some noise. So, we want something like this:

𝑑𝑁𝑡 = 𝜃(𝜇 − 𝑁𝑡) 𝑑𝑡 + 𝜎 𝑑𝑊𝑡

For example, let’s say that a lake can accept around 𝜇 = 1000 trouts. If there are more than
that, some will starve and die off, and if there are less, then they will reproduce. Finally, 𝜃
controls how strong is the correction. Here are some examples with 𝜃 = 1 and different values
for 𝜎:

library(ggplot2)

Right
dt <- 0.01
total_time <- 10
N_0 <- 10
mu_ou <- 1000.0
tetha_ou <- 1.0

steps = total_time / dt
times <- seq(from = 0, to = total_time, length.out=steps)
stretched_times <- times * tetha_ou
dBt <- rnorm(steps,mean = 0, sd = sqrt(dt))

df <- data.frame(
time=stretched_times

)

1

sigma_ou <- 0
N <- rep_len(x = N_0, length.out = length(times))
for (i in (2:length(times))) {
N[i] <- N[i-1] + tetha_ou * (mu_ou - N[i-1]) * dt + sigma_ou * dBt[i]

}
df$N_0 <- N

sigma_ou <- 100
N <- rep_len(x = N_0, length.out = length(times))
for (i in (2:length(times))) {
N[i] <- N[i-1] + tetha_ou * (mu_ou - N[i-1]) * dt + sigma_ou * dBt[i]

}
df$N_100 <- N

sigma_ou <- 250
N <- rep_len(x = N_0, length.out = length(times))
for (i in (2:length(times))) {
N[i] <- N[i-1] + tetha_ou * (mu_ou - N[i-1]) * dt + sigma_ou * dBt[i]

}
df$N_250 <- N

ggplot(data = df, mapping = aes(x=time), legend=TRUE) +
xlab('Time') +
ylab('N(t)') +
geom_line(mapping = aes(y=N_100, colour="�=100"),linewidth = 1) +
geom_line(mapping = aes(y=N_250, colour="�=250"),linewidth = 1) +
geom_line(mapping = aes(y=N_0, colour="�=0"),linewidth = 1) +
scale_colour_manual("Functions",values=c("black","darkgray","darkviolet"))

2

0

500

1000

0.0 2.5 5.0 7.5 10.0
Time

N
(t

)

Functions

s=0

s=100

s=250

This is a very common process, so much it has a name: the Ornstein-Uhlenbeck process. Now,
let’s calculate 𝐷𝑁 . We have 𝑎(𝑋) = 𝜃(𝜇 − 𝑋) and 𝑏(𝑥) = 𝜎, so it’s not a simple Ito process
that only depends on time. We better start from those before tackling the Ornstein-Uhlenbeck
process. If we remember that we can split the integrals as ∫𝑡

0 ...𝑑𝑊𝑡 = ∑𝑛
𝑖=1 ...(𝑊𝑡𝑖

− 𝑊𝑡𝑖−1
),

then we can transform a classical Ito process 𝑋𝑡 into something we can easily apply chain and
product rules:

𝑋𝑡 =
𝑛

∑
𝑖=1

𝜇𝑡𝑖
(𝑡𝑖 − 𝑡𝑖−1) +

𝑛
∑
𝑖=1

𝜎𝑡𝑖
(𝑊𝑡𝑖

− 𝑊𝑡𝑖−1
)

𝐷𝑟𝑋𝑡 =
𝑛

∑
𝑖=1

𝐷𝑟𝜇𝑡𝑖
(𝑡𝑖 − 𝑡𝑖−1) +

𝑛
∑
𝑖=1

𝐷𝑟[𝜎𝑡𝑖
⋅ (𝑊𝑡𝑖

− 𝑊𝑡𝑖−1
)]

=
𝑛

∑
𝑖=1

𝐷𝑟𝜇𝑡𝑖
(𝑡𝑖 − 𝑡𝑖−1) +

𝑛
∑
𝑖=1

𝜎𝑡𝑖
⋅ 1[𝑡𝑖−1,𝑡𝑖](𝑟) +

𝑛
∑
𝑖=1

𝐷𝑟(𝜎𝑡𝑖
) ⋅ (𝑊𝑡𝑖

− 𝑊𝑡𝑖−1
)]

= ∫
𝑡

0
𝐷𝑟𝜇𝑠 𝑑𝑠 + 𝜎𝑟1[0,𝑡](𝑟) + ∫

𝑡

0
𝐷𝑟𝜎𝑠 𝑑𝑊𝑠

It looks messy, but things are what we expect: 𝑡 is the terminal value of both integrals, 𝑠 is the
variable we use to integrate from 0 to 𝑡, and 𝑟 is the variable we introduced with the Malliavin
Derivative. See that it makes sense: the influence of 𝜎 in the Ito process is the same along the
whole Ito process path.

3

Now, we can use a similar argument for the number of trouts in the lake, which followed an
Ornstein-Uhlenbeck process. Given that 𝜇𝑠 and 𝜎𝑠 are now 𝑎(𝑠, 𝑋𝑠) and 𝑏(𝑠, 𝑋𝑠), we apply
chain and product rules as above to arrive to:

𝐷𝑟𝑋𝑡 = ∫
𝑡

𝑟

𝜕𝑎
𝜕𝑥(𝑠, 𝑋𝑠) 𝐷𝑟𝑋𝑠 𝑑𝑠 + 𝑏(𝑟, 𝑋𝑟)1[0,𝑡](𝑟) + ∫

𝑡

𝑟

𝜕𝑏
𝜕𝑥(𝑠, 𝑋𝑠) 𝐷𝑟𝑋𝑠 𝑑𝑊𝑠

Now, we know from above that 𝜕𝑎
𝜕𝑥 = −𝜃 and 𝜕𝑏

𝜕𝑥 = 0, so we get:

𝐷𝑟𝑁𝑡 = ∫
𝑡

𝑟
(−𝜃) 𝐷𝑟𝑁𝑠 𝑑𝑠 + 𝜎1[0,𝑡](𝑟)

= −𝜃 ∫
𝑡

𝑟
𝐷𝑟𝑁𝑠 𝑑𝑠 + 𝜎1[0,𝑡](𝑟)

= 𝜎 𝑒−𝜃(𝑡−𝑟)

In the case above, we arrive at a neat expression that tell us something interesting: the effect
of a perturbation on the number of trouts is exponentially smaller if 𝑟 << 𝑡. This makes sense:
the population of trouts 𝑁 wants to be close to 𝜇 and the population from a distant past is
irrelevant. It also tells us that there’s no randomness in the fluctuation because it doesn’t
depend on any random variable, such as 𝑊𝑡.

Finally, we lucked out above. The expression for 𝐷𝑟𝑁𝑡 is simple, so we could write an analytic
expression for it. If it were more convoluted, it’s probably better to estimate a solution. Alos
(2021) does a great job showcasing the above.

Clark-Ocone-Haussman Formula

Let’s see a relatively simple application with profound implications, following Friz (2002) en-
tirely. Let’s consider this function:

𝐹(𝑡) = 𝑒∫𝑡
0 ℎ 𝑑𝐵− 1

2 ∫𝑡
0 ℎ2𝑑𝜆

This function is an exponential martingale, that is, 𝔼𝑠[𝐹 (𝑡)] = 𝐹(𝑠). We now take 𝐹(1) = ℰ(ℎ)
and we now calculate 𝐷𝐹 :

𝐷𝑡𝐹 = 𝑒− 1
2 ∫1

0 ℎ2𝑑𝜆 ⋅ 𝐷𝑡(𝑒∫1
0 ℎ 𝑑𝐵)

= 𝑒− 1
2 ∫1

0 ℎ2𝑑𝜆 ⋅ 𝑒∫1
0 ℎ 𝑑𝐵⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐹
⋅ℎ(𝑡)

= 𝐹ℎ(𝑡)

4

Now, this is only valid at 𝑡 = 1, but we use the expectation operator and martingale property
to get the values at a previous time. We will call ℱ𝑠 the filtration up to time 𝑠, and it’s the
way we call the “history” or “information” known up to time 𝑠, and then:

𝔼[𝐷𝑡𝐹|ℱ𝑡] = 𝔼[𝐹(1)ℎ(𝑡)|ℱ𝑡]
= ℎ(𝑡)𝔼[𝐹(1)|ℱ𝑡]
= ℎ(𝑡)𝐹(𝑡)

Now, we pull everything together. This martingale 𝐹(𝑡) is the solution of the (stochastic)
differential equation 𝑑𝐹(𝑡) = ℎ(𝑡)𝐹(𝑡)𝑑𝐵𝑡, when 𝐹(0) = 1 = 𝔼[𝐹]. Replacing with the above
expression we get:

𝐹(𝑡) = 𝔼[𝐹] + ∫
1

0
ℎ(𝑡)𝐹(𝑡)𝑑𝐵𝑡

= 𝔼[𝐹] + ∫
1

0
𝔼[𝐷𝑡𝐹|ℱ𝑡]𝑑𝐵𝑡

This is the Clark-Ocone formula, which is an explicit formula for the Martingale Representation
Theorem. The Malliavin derivative is the key ingredient to have an analytic expression and it’s
the main reason one would care about it. What this is telling us is that any random variable
indexed by time 𝐹𝑡 can be split into a sum of a “deterministic” portion, the expected value,
and a martingale that fluctuates around it.

We can apply this to the Ornstein-Uhlenbeck process for our trouts. We know from before
that 𝐷𝑟𝑁𝑡 = 𝜎 𝑒−𝜃(𝑡−𝑟). Notice that there’s no 𝑊𝑡, so the expected value is just the Malliavin
derivative. We could estimate the value of 𝔼[𝑁] or try to solve the (stochastic) differential
equation, but given that the process already has a known solution, I’ll go ahead and add it.
Here’s in all its splendor:

𝑁(𝑡) = 𝔼[𝑁] + ∫
𝑡

0
𝔼𝕣[𝐷𝑟𝑁𝑡]𝑑𝑊𝑟

= 𝑋0𝑒−𝜃𝑡 + 𝜇(1 − 𝑒−𝜃𝑡)⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐

+ ∫
𝑡

0
𝜎 𝑒−𝜃(𝑡−𝑟) 𝑑𝑊𝑟⏟⏟⏟⏟⏟⏟⏟
𝑀𝑎𝑟𝑡𝑖𝑛𝑔𝑎𝑙𝑒

Why do we care about this? Well, for once, if we wanted to simulate different paths of our
fish population 𝑁 , we only need to simulate the martingale portion, and the deterministic
portion is only calculated once. Secondly, we can use the Clark-Ocone formula to directly
calculate the variance for 𝑁 , without knowing the full analytic solution. Indeed, remember
that 𝕍𝕒𝕣[𝑁] = 𝔼[𝑁 − 𝔼[𝑁]]2, so then, using Ito’s Isometry:

5

𝕍𝕒𝕣[𝑁] = 𝔼 ⎡⎢
⎣

(∫
𝑡

0
𝔼𝕣[𝐷𝑟𝑁𝑡]𝑑𝑊𝑟)

2
⎤⎥
⎦

= 𝔼 [∫
𝑡

0
(𝜎 𝑒−𝜃(𝑡−𝑟))2 𝑑𝑟]

= 𝜎2𝔼 [∫
𝑡

0
𝑒2𝜃(𝑟−𝑡)𝑑𝑟]

= 𝜎2

2𝜃 𝔼 [1 − 𝑒−2𝜃𝑡]

= 𝜎2

2𝜃 (1 − 𝑒−2𝜃𝑡)

Notice that this works for any variable: you only need the Malliavin Derivative to get the
variance. We see above that:

• Our trout population 𝑁 in the long term (𝑡 → ∞) will be a process moving around 𝜇
with a constant variance 𝜎2

2𝜃

• Variance at the time of trout introduction (𝑡 ≈ 0) is very small because the growth of 𝑁 ,
trying to reach 𝜇 as soon as possible, dominates over the noise

• A large 𝜃 will not only make the long term variance arrive sooner, it will also prevent
large deviations from 𝜇

Alos, & Lorite, E. 2021. Malliavin Calculus in Finance: Theory and Practice (1st Ed.).
1st ed. Financial Mathematics Series. Chapman; Hall/CRC. https://doi.org/10.1201/
9781003018681.

Friz, Peter K. 2002. “An Introduction to Malliavin Calculus.” In. https://api.semanticscholar.
org/CorpusID:2479628.

6

https://doi.org/10.1201/9781003018681
https://doi.org/10.1201/9781003018681
https://api.semanticscholar.org/CorpusID:2479628
https://api.semanticscholar.org/CorpusID:2479628

	Applications and in-depth cases
	Malliavin derivative of the Ornstein-Uhlenbeck process
	Clark-Ocone-Haussman Formula

