
The question

As I mentioned previously, Malliavin Calculus isn’t a topic that can easily relate to everyday
things. Most authors I’ve checked don’t detail too much on why an object like it exists, or the
Clark-Ocone formula. Instead, they go to the Hormander condition, which is meaningless for
our purposes.

If Malliavin Calculus is called the extension of calculus of variations to stochastic processes,
then the time has come to discuss stochastic processes and martingales.

Stochastic processes

We can think of stochastic processes as a sequence of random variables that are indexed by
time. I’ll start with a very simple case, the one-dimensional random walk (also known as the
drunkard’s walk):

ℙ({𝑋𝑖 = +1}) = 0.5
ℙ({𝑋𝑖 = −1}) = 0.5

𝑋0 = 0

𝑍𝑛 =
𝑛

∑
𝑖=1

𝑋𝑖

This is very simple: at time 𝑖, after Δ𝑡 has passed, the drunkard take a step 𝑋𝑖, which can be
either up or down the street with equal probability. The position 𝑍 at 𝑡 is simply the result
of all the steps the drunkard has taken before. As it stands, each movement “up” can be
considered a “success”, so this sum follows a binomial distribution centered at 0.

Let’s consider something else: let the random walk take more frequent and shorter steps.
In the language of the symbols above, Δ𝑡 and 𝑋𝑖 are made smaller. As the steps become
infinitesimals, the process becomes continuous. This is how a path may look like when Δ𝑡 =
0.1, 0.01, 0.001:

library(ggplot2)
library(rgl)
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# Left
h <- 0.01
steps = 1 / h
xl <- seq(from = 0, to = 1, length.out=steps)
yl <- (rbinom(steps-1,1,0.5)*2-1)*sqrt(h)/2
zl <- c(0,cumsum(yl))
ggplot(mapping = aes(x = xl), legend=TRUE) +
geom_line(mapping = aes(y=zl, fill="f(X)")) +
xlab('Time') +
ylab('Z')
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# Middle
h <- 0.001
steps = 1 / h
xl <- seq(from = 0, to = 1, length.out=steps)
yl <- (rbinom(steps-1,1,0.5)*2-1)*sqrt(h)/2
zl <- c(0,cumsum(yl))
ggplot(mapping = aes(x = xl), legend=TRUE) +
geom_line(mapping = aes(y=zl, fill="f(X)")) +
xlab('Time') +
ylab('Z')
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# Right
h <- 0.0001
steps = 1 / h
xl <- seq(from = 0, to = 1, length.out=steps)
yl <- (rbinom(steps-1,1,0.5)*2-1)*sqrt(h)/2
zl <- c(0,cumsum(yl))
ggplot(mapping = aes(x = xl), legend=TRUE) +
geom_line(mapping = aes(y=zl, fill="f(X)")) +
xlab('Time') +
ylab('Z')

3



−0.2

−0.1

0.0

0.1

0.2

0.3

0.00 0.25 0.50 0.75 1.00
Time

Z

A one-dimensional random walk from 0 to 𝑡, in a similar fashion to the Central Limit Theorem,
will converge to a normal variable:

𝑍𝑡 ∼ 𝒩(𝜇 = 0, 𝜎2 = 𝑡)

These continuous-time stochastic processes are called Brownian motions or Wiener processes.
They are denoted as 𝐵𝑡 or 𝑊𝑡 and fulfill a set of conditions:

• 𝐵0 = 0
• Increments are independent, that is, (𝐵𝑡+𝑠 −𝐵𝑡) doesn’t depend on earlier values 𝐵𝑟, 𝑟 <

𝑡
• Increments are Gaussian, that is, (𝐵𝑡+𝑠 − 𝐵𝑡) ∼ 𝒩(𝜇 = 0, 𝜎2 = 𝑠)
• 𝐵𝑡 is continuous at 𝑡. A bit circular, I know.

There’s a catch, though. Even though they are continuous, these functions aren’t differentiable.
You kind of see it from the previous path graphs, with how jagged they become as the indices,
or steps, shrink. It also makes sense if you think about the way we constructed the process:
when you are at a point in time 𝑡, you don’t know from where you randomly came. Did you
arrive from a smaller or bigger value at 𝑡 − Δ𝑡? There’s no way to make sense of 𝜕𝑍𝑡

𝜕𝑡 .
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Ito Calculus

The drunkard’s walk is a very simple case of a stochastic process. What about more compli-
cated random variables or functions of these variables?

We start from a simple substitution: we can’t do 𝜕𝑍𝑡
𝜕𝑡 but we “can” pass the 𝑑𝑡 as a multipli-

cation, like we do with total derivatives, and refer to just 𝑑𝑍𝑡. In general, we would like to
express a minuscule change in the random variable being composed of something that changes
very little in time and a little “noise”. In short, something like this:

𝑑𝑍𝑡 = 𝑎(.)𝑑𝑡 + 𝑏(.)𝑑𝐵𝑡

For starters, we can assume the functions 𝑎 and 𝑏 above are only functions of time. We then
integrate over time and reach the definition of an Ito process:

∫
𝑡

0
𝑑𝑍𝑡 = 𝑍𝑡 − 𝑍0 = ∫

𝑡

0
𝜇𝑠𝑑𝑠 + ∫

𝑡

0
𝜎𝑠𝑑𝐵𝑠

This representation is nice because the random variable 𝑍𝑡 has a mean that depends on some-
thing that changes along time, and has a variance tied to the noise. Having said that, we
need a way to think about 𝑑𝐵𝑡 . For that, we can assume something simple, that instead of
a continuum of 𝑑𝐵𝑡, there’s a list of discrete 𝑡𝑖 and discrete increments Δ𝐵𝑡𝑖

, so now we deal
with:

𝜎𝑡𝑖
∗ (𝐵𝑡𝑖

− 𝐵𝑡𝑖−1
)

We can calculate the above because that difference of Brownian motions can be transformed
into a normal distribution that we can manipulate. To show how this help us, we can do
the following calculation and confirm that the expected value of 𝑍 only depends on the first
term:

𝔼 [∫
𝑡

0
𝜎𝑠 𝑑𝐵𝑠] =

𝑛
∑
𝑖=1

𝜎𝑡𝑖
𝔼 [𝐵𝑡𝑖

− 𝐵𝑡𝑖−1
] =

𝑛
∑
𝑖=1

𝜎𝑡𝑖
𝔼 [𝒩(0, 𝑡𝑖 − 𝑡𝑖−1)] = 0

Using this approach, we can show that Ito processes satisfy:

𝔼 [𝑋𝑡] = ∫
𝑡

0
𝜇𝑠 𝑑𝑠

𝕍𝕒𝕣 [𝑋𝑡] = ∫
𝑡

0
𝜎2

𝑠 𝑑𝑠
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Other ways we can deal with this 𝐵𝑡 is with Ito’s isometry, which allows you to exchange
the 𝑑𝐵𝑡 into a more workable 𝑑𝑡:

𝔼 ⎡⎢
⎣

(∫
𝑡

0
𝑋𝑠 𝑑𝐵𝑠)

2
⎤⎥
⎦

= 𝔼 [∫
𝑡

0
𝑋2

𝑠 𝑑𝑠]

With these tools, we can calculate a mean and a variance for every point in time in a process.
But there’s an even more powerful tool in our arsenal: Ito’s lemma, or Ito’s formula. In
order to present this, we start with an Ito process for a random variable, say 𝑋𝑡:

𝑑𝑋𝑡 = 𝜇𝑡 𝑑𝑡 + 𝜎𝑡 𝑑𝐵𝑡

𝑋𝑡 = 𝑋0 + ∫
𝑡

0
𝜇𝑠 𝑑𝑠 + ∫

𝑡

0
𝜎𝑠 𝑑𝐵𝑠

Now, we want something more involved. Something like:

𝑌𝑡 = 𝑓(𝑡, 𝑋𝑡)

𝑑𝑌𝑡 = 𝑎(𝑡, 𝑋𝑡) 𝑑𝑡 + 𝑏(𝑡, 𝑋𝑡) 𝑑𝐵𝑡

𝑤𝑖𝑡ℎ

𝑑𝑋𝑡 = 𝜇𝑡 𝑑𝑡 + 𝜎𝑡 𝑑𝐵𝑠

Notice that we can’t just do the typical chain rule from calculus. That is, we still can’t do
something like:

𝜕𝑌𝑡
𝜕𝑡 = 𝜕𝑌𝑡

𝜕𝑋𝑡

𝜕𝑋𝑡
𝜕𝑡

But we can prove that there’s an alternative chain rule we can apply, called Ito’s lemma:

𝑑𝑓(𝑡, 𝑋𝑡) = 𝜕𝑓
𝜕𝑡 𝑑𝑡 + 𝜇𝑡

𝜕𝑓
𝜕𝑥 𝑑𝑡 + 𝜎𝑡

𝜕𝑓
𝜕𝑥 𝑑𝐵𝑡 + 𝜎2

𝑡
2

𝜕2𝑓
𝜕𝑥2 𝑑𝑡

𝑑𝑓(𝑡, 𝑋𝑡) = (𝜕𝑓
𝜕𝑡 + 𝜇𝑡

𝜕𝑓
𝜕𝑥 + 𝜎2

𝑡
2

𝜕2𝑓
𝜕𝑥2 )

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑎(𝑡,𝑋𝑡)

𝑑𝑡 + (𝜎𝑡
𝜕𝑓
𝜕𝑥)⏟

𝑏(𝑡,𝑋𝑡)

𝑑𝐵𝑡
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The first equation almost looks like a Taylor expansion up to the 2nd derivative, and in
informal proofs that’s what’s going on. The second equation shows the explicit expressions for
the 𝑎(𝑡, 𝑋𝑡) and 𝑏(𝑡, 𝑋𝑡) functions we mentioned before. This is great, because we can still split
the “trend” component and the “noise” component for more complicated random processes.
It also means that the “trend” is affected by how strong the “noise” is. Finally, notice that a
non-random function with 𝜎𝑡 = 0 reverts to a classical total derivative and chain rule.

Martingales and final notions

Some stochastic processes present additional properties. One of those “some” are the martin-
gales. They are either discrete or continuous-time processes that satisfy:

• 𝔼[|𝑋𝑡|] < ∞, ∀𝑡 ≥ 0 . This means that the process always has a finite value.
• 𝔼[𝑋𝑡+𝑠|𝑋𝑡] = 𝑋𝑡, ∀𝑡 ≤ 𝑠. This means that the expected value for future realizations of

the process is whatever value you have right now.

The drunkard’s walk is an example of a martingale: at any time, it’s equally likely it will go up
or down, so the expected value is wherever you are at that point in time. Brownian motions
are also martingales: increments follow a normal distribution, so the expected value of the
increment is 0. Other examples of typical martingales are betting black or red at the roulette,
or a stock price in the short term.

There’s a result called the Martingale Representation Theorem, which states that any random
variable 𝑋 can be written in terms of another process 𝐶, with values known in advance, like
so:

𝑋 = 𝔼 [𝑋] + ∫
∞

0
𝐶𝑠 𝑑𝐵𝑠

This is valuable for finance people because it means that any investment strategy (which is a
random process) can be replicated with a different investment strategy (another process), but
with lower volatility (and probably higher initial cost!). This theorem is less valuable because
it doesn’t give any means to calculate it, we can’t apply a derivative and try to extract that
𝑑𝐵𝑡

A second representation, from Rogers and Williams (2000), establishes that martingales can
be represented as Ito integrals:

𝑀𝑡 = 𝑀0 + ∫
𝑡

0
𝛼𝑠 𝑑𝐵𝑠

In a limited sense, 𝛼𝑡 can be thought as 𝜕𝑀𝑡
𝜕𝑡 because if we integrate it up to 𝑡 we recover the

final point, but it’s not quite what we are looking for.
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And it’s always frustrating. We have been trying to find a way to calculate derivatives on
these random processes, Brownian motions and martingales, but it’s elusive. And the thing is,
we kind of know that is possible. Indeed, let’s go back to our first continuous random process,
the one-dimensional Wiener process. We managed to reach the point were we can say that 𝑊𝑡
had a normal distribution. So, nothing prevents us from taking a derivative over that, right?

𝑊𝑡 ∼ 𝒩(0, 𝑡)

𝑊(𝑥, 𝑡) = 1√
2𝜋𝑡𝑒−𝑥2/(2𝑡)

𝜕𝑊
𝜕𝑡 = 𝑒−𝑥2/(2𝑡) 𝑡−5/2 (𝑥2 − 𝑡)

2
√

2𝜋

And there we have it. Ugly as it may be, we have constructed a derivative for how the density
of these random variables evolve with time, although we don’t know if it’s even useful. Let’s
plot it both the density and the derivative in 3D.

options(rgl.useNULL=TRUE)
rgl::setupKnitr(autoprint = TRUE)
h = 200
Wt <- function(x, t) {
if (t == 0) {

return(0)
} else {

return(exp(-x^2/2/t)/sqrt(2*pi*t))
}

}
dWt <- function(x, t) {
if (t == 0) {

return(0)
} else {

return(exp(-x^2/2/t)*t^(-5/2)*(x^2-t)/sqrt(8*pi))
}

}
Wt <- Vectorize(Wt)
dWt <- Vectorize(dWt)

times <- seq(from=0, to=5, length.out=h)
xes <- seq(from=-5, to=5, length.out=h)

W <- outer(xes, times, Wt)
# persp(xes, times, W, col='white', shade=.1, theta = 150, phi = 15, ticktype='detailed', xlab = "X", ylab = "T", zlab = "N", d = 2, expand = 1.0, border="darkgrey")
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# open3d(windowRect=c(50,50,800,800))
palette <- colorRampPalette(c("blue", "green", "yellow", "red"))
col.table <- palette(256)
col.ind <- cut(W, 256)
persp3d(x=xes, y=times, z=W, col=col.table[col.ind],

xlab="X", ylab="Time", zlab="Density")

# rglwidget()

dW <- outer(xes, times, dWt)
# persp(xes, times, dW, col='white', shade=.1, theta = 150, phi = 15, ticktype='detailed', xlab = "X", ylab = "T", zlab = "N", d = 2, expand = 1.0, border="darkgrey")
col.ind <- cut(dW, 256)
persp3d(x=xes, y=times, z=dW, col=col.table[col.ind],

xlab="X", ylab="Time", zlab="Derivative of density")
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# rglwidget()

Conclusion

At this point, we have seen enough. We know what we want: a way to calculate derivatives
over random variables and Wiener processes “in a certain sense” that’s useful. That’s what
Malliavin calculus is set to do.

Rogers, L. C. G., and David Williams. 2000. Diffusions, Markov Processes and Martingales.
2nd ed. Vol. 2. Cambridge Mathematical Library. Cambridge University Press. https:
//doi.org/10.1017/CBO9780511805141.
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